Fuel Cell Impedance Model Parameters Optimization using a Genetic Algorithm
نویسندگان
چکیده
منابع مشابه
Optimization of e-Learning Model Using Fuzzy Genetic Algorithm
E-learning model is examined of three major dimensions. And each dimension has a range of indicators that is effective in optimization and modeling, in many optimization problems in the modeling, target function or constraints may change over time that as a result optimization of these problems can also be changed. If any of these undetermined events be considered in the optimization process, t...
متن کاملOptimization of e-Learning Model Using Fuzzy Genetic Algorithm
E-learning model is examined of three major dimensions. And each dimension has a range of indicators that is effective in optimization and modeling, in many optimization problems in the modeling, target function or constraints may change over time that as a result optimization of these problems can also be changed. If any of these undetermined events be considered in the optimization process, t...
متن کاملPID Parameters Optimization by Using Genetic Algorithm
Time delays are components that make time-lag in systems response. They arise in physical, chemical, biological and economic systems, as well as in the process of measurement and computation. In this work, we implement Genetic Algorithm (GA) in determining PID controller parameters to compensate the delay in First Order Lag plus Time Delay (FOLPD) and compare the results with Iterative Method a...
متن کاملOPTIMIZATION TO IDENTIFY MUSKINGUM MODEL PARAMETERS USING IMPERIALIST COMPETITIVE ALGORITHM
In engineering, flood routing is an important technique necessary for the solution of a floodcontrol problem and for the satisfactory operation of a flood-prediction service. A simple conceptual model like the Muskingum model is very effective for the flood routing process. One challenge in application of the Muskingum model is that its parameters cannot be measured physically. In this article ...
متن کاملOptimization of Arc Welding Process Using a Genetic Algorithm Parameters
The purpose of this study is to propose a method to decide nearoptimal settings of the welding process parameters using a genetic algorithm. This method tries to find the near-optimal settings of the welding process parameters through experiments without a model between input and output variables. It has the advantage of being able to carry out searches without modifying the design space, which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Electrical and Computer Engineering (IJECE)
سال: 2017
ISSN: 2088-8708,2088-8708
DOI: 10.11591/ijece.v7i1.pp184-193